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Abstract

The partitioning of a single polymer chain into a slit in a good solvent with different surface interactions is examined through Monte Carlo

simulations from subcritical regime to adsorptive regime. The chain conformation in the subcritical regime is not perturbed by the surface

interactions significantly. In the adsorptive regime, the conformation of the chain is strongly perturbed by the surface interactions. The

confinement free energy in the two regimes maybe written in a uniform formula, bDmconf , c1Nða=DÞx1w þ c2Nða=DÞ1=n with x , 2:0 or

larger in the subcritical regime and ,1.0 in the adsorptive regime, where n is the Flory exponent, D is the slit width, N is the chain length, a is

the monomer size, and 1w is the surface interaction energy between the polymer beads and the slit. This formula is valid for a long chain in the

narrow slit in the subcritical regime or when the adsorption layer h . D in the adsorptive regime. A critical behavior occurs when 1w is at the

critical adsorption point and x ¼ 1=n; then Dmconf will have little dependence on N or D: Higher order terms that are neglected in the above

equation, however, may be present that could lead to a weak dependence of K on N and D even in the critical adsorption point.

q 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

The partitioning of polymers into pores is an old subject

and is important to chromatography separations of polymers

such as gel-permeation chromatography (GPC) [1–10]. It

has received extensive studies over the years [11–20].

Casassa developed a theoretical model for an ideal Gaussian

chain confined in a slit and derived an analytical expression

for the partitioning coefficient [1,2]. The theoretical result

obtained has served as an important guide for experiments

[10], though the ideal Gaussian chain is not a suitable model

for real polymers. De Gennes has provided a scaling theory

that accounts for the partitioning of both real polymer chains

and ideal Gaussian chains into narrow pores [7]. Computer

simulations have confirmed the predictions from the scaling

theory [18]. The surfaces of the pore in these previous

studies are assumed to be purely repulsive. Polymer chains

are repelled from the surfaces. There was little interest to

consider pores with adsorptive surfaces because in most of

the chromatography applications it is not desirable to have

polymer adsorptions in the columns.

In recent years, new chromatography methods are being

developed to separate complex polymer systems such as

polymer blends, block copolymers and polymers with

different stereo-regularity [21–26]. In these chromatog-

raphy methods, attractive interactions of polymers with the

pore surfaces are utilized. Liquid chromatography at critical

adsorption point (LCCAC) is an example that makes use of

the compensation of the enthalpic interaction with entropic

interaction such that polymer chains are eluted independent

of their molecular weights [22–24]. LCCAC coupled with

regular GPC has found great use in separating block

copolymers with different block compositions. These new

chromatography methods, therefore, lead to new interests in

studying the partitioning of polymers into pores with

adsorptive surfaces.

Polymer adsorption on a solid surface is also an old

subject and has received extensive studies [27–35]. The

existence of trains, loops and tails in the adsorbed polymers

and the thickness of the adsorbed layers have been well

studied [34]. Polymers confined in a pore with adsorptive
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surfaces, therefore, combine the two effects and have some

interesting phenomenon. There are up to now few studies of

chains in adsorptive pores [36–40]. Gorbunov and Skvort-

sov extended the theoretical model by Casassa to slits with

adsorptive surfaces and examined many properties of the

confined chains [36]. The results, however, are only

applicable to ideal Gaussian chain. Milchev and Binder

have performed computer simulations of a chain confined in

a slit and a square pore with adsorptive surfaces [37–39].

They have examined the density profiles in the slit, radius of

gyration of the chains and the mobility of the chain in the sit.

However, they have not studied the equilibrium between the

bulk solution and the pore. Cifra and Bleha systematically

examined the influence of a number of factors including the

surface interaction on polymer partitioning [40]. However,

the range of surface interaction examined was somewhat

limited to weak interactions.

Previously, we have studied the polymer partitioning into

a slit near the critical adsorption point [41]. There we

focused on the exact location of the critical point at which

the enthalpic attraction and the entropic exclusion of the

chain in the pore cancel with each other such that the

partition coefficient of the chain in the pore may be one

ðK ¼ 1Þ: We identified that this critical point exists for a

random walk chain, and it corresponds to the critical

adsorption point of a random walk chain above a surface. At

the critical adsorption point, the partition coefficient of a

random walk chain into a slit is exactly one ðK ¼ 1Þ; and is

independent of the molecular weight of the chain. However,

for a self-avoiding walk chain, one cannot find such a point

at which K ¼ 1 and K is independent of the molecular

weight of the chain at the same time. The cancellation

between the entropic exclusion, and the enthalpic attraction

does not occur at the same point for a self-avoiding walk

chain. The closest to the ‘critical behavior’ is at the critical

adsorption point of a self-avoiding walk chain above a solid

surface. At this critical adsorption point, the partition

coefficient is slightly above one (Kcr observed ranging from

1.05 to 1.6) and it has a very weak dependence on the

molecular weight of the chain.

In the previous paper, the interaction between polymer/-

wall considered is very close to the critical adsorption point

(the ‘critical regime’). In this paper, we extend our study

into a wide range of surface interaction, from below the

critical adsorption point (the ‘subcritical regime’) to above

the critical adsorption point (the ‘adsorptive regime’), but

we restrict this study to dilute solution limit and consider

only the partitioning of a single polymer chain. The partition

coefficients will have different dependence on the chain

length N; slit width D; and the surface interaction 1w in

different regimes. Is there a universal function that can

describe the dependence of K on 1w; N and D in each

regime? What is the dominant term that determines the K in

each regime? These are the questions that we would like to

answer. One has to bear in mind that we probably cannot

find a relationship that describes the data in the whole range

since the dependence of K on these parameters will change

from one limit (non-adsorptive regime) to the other limit

(critical or adsorptive regime). The best, we can find is the

dominant terms in each regime and the interpolation

between different regimes.

2. Simulation method

The slit is modeled by a simple cubic lattice with

dimensions of 250a £ 250a £ ðD þ 1Þa along the x; y and z

directions. There are two solid walls located at z ¼ a and

z ¼ ðD þ 1Þa layers extending in the x and y directions.

Polymer beads cannot occupy sites on the wall. D is the slit

width, which is the distance between the two walls. A single

polymer chain consisting of N beads is placed initially on

the lattice and the reptation move with the metropolis rule is

used to equilibrate the chain in the slit. The equilibration of

the chain is monitored by monitoring the orientation

correlation of the end-to-end vector of the chain. We

found reptation move is sufficient to equilibrate a single

chain in the pore in our study. The chain is a self-avoiding

walk. There are no interactions between polymer beads

except the excluded volume interaction, so the polymer

chain is in an athermal solvent. The pore wall and polymer

beads interaction is characterized by a nearest neighbor

reduced interaction 1w whenever a polymer bead is in direct

contact with the sites on the wall. After an initial

equilibration, 5000–10,000 snapshots of the chain, separ-

ated by , N2 steps, are collected and analyzed. We obtained

the chemical potential of the chains in the slit, the density

profiles across the slit, the radius of gyration of the chain in

the xy and z components and the orientation of the chain

inside the slit.

The partition coefficients for a single chain in the pore

are obtained by comparing the chemical potential of a

single chain in the bulk mbulk and in the confined slit mconf

using the chain insertion method. The details of chain

insertion method are given before [41,42]. The partition

coefficient K for the chain at infinite dilute is given by

2ln K ¼ bDmconf ¼ bðmconf 2 mbulkÞ:

3. Results and discussion

Fig. 1 presents the plot of bDmconf vs. 2Rg0=D for a single

chain with different chain lengths N ¼ 25; 50, 100 and 200,

partitioning into a slit of width D ¼ 6 at different surface

interactions 1w: Rg0 is the radius of the gyration of the chain

in the unconfined solution. The ratio 2Rg0=D is the

confinement strength. The longer the chain and the smaller

the slit width, the stronger the confinement strength is. In

Fig. 1, the slit width D is fixed, the variation of the

confinement strength is only due to the change in the chain

length. The critical adsorption point in our simulation

model has been determined earlier [41] and was found to be
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1cr
w ¼ 20:276: The critical adsorption point divides the data

in Fig. 1 to two different regimes, the subcritical regime

ðl1wl , 0:276Þ and the adsorptive regime ðl1wl . 0:276Þ:

The variation of the confinement free energy on the

confinement strength is distinctly different in the two

regimes. In the subcritical regime, bDmconf increases with

the confinement strength. Longer polymer chains experi-

ence a larger confinement free energy cost in a slit than the

shorter polymer chains. In the adsorptive regime, it is the

reverse. Longer polymer chains are more strongly adsorbed

in the slit than the shorter polymer chains. Below we will

discuss the properties of the chain in the slit for the two

regimes separately.

3.1. Subcritical regime ðl1wl , l1cr
w lÞ

When there is no surface interaction ð1w ¼ 0Þ; the

partition coefficient K is known to vary with the ratio

2Rg0=D; but not individually. A plot of K vs. 2Rg0=D for

different chain sizes Rg0 and slit widths D will collapse into

a single master curve as confirmed earlier [42]. When the

surface interaction is weak, such as 1w ¼ 20:1; such scaling

plot still holds to a good degree. When 1w ¼ 20:2; one

can clearly see the deviation from the master plot as

shown in Fig. 2. The filled symbols in Fig. 2 are data for

1w ¼ 0:0; which is fitted to the scaling law dependence

bDmconf , ð2Rg0=DÞ1=n where n ¼ 0:58 in our model.

Data in Fig. 2 reveal that in the presence of attractive

interaction, the smaller the slit width D; the more deviation

of bDmconf from the master curve obtained when 1w ¼ 0:0:

If one compares bDmconf at the same confinement strength,

2Rg0=D; then bDmconf for short chains in the narrow slit is

smaller than for the corresponding long chains in the wide

slit but with same confinement strength.

In order to find the universal relationship between K and

N and D in the subcritical regime, we used the following

scaling arguments. In the case of a long chain in narrow slit,

the confined chain maybe viewed as being composed of

blobs of size of slit width D: The confinement free energy

per blob is kBT when there is no surface interaction [27].

Therefore, one has Dmconf ¼ ðN=gÞkBT ¼ ðRg0=DÞ1=nkBT

where g is the number of monomers in a blob of size D;

n is the Flory exponent. If there is a weak surface

interaction, one may assume that the chain is still composed

of blobs of size D: The confinement free energy can be

broken into two parts, the enthalpic interaction due to the

attractive interaction and the entropic due to the loss of

configurational entropy.

bDmconf ¼ bDH 2 kBDS ð1Þ

The entropic free energy maybe assumed to be the same as

that in the absence of the surface interactions since one still

needs to confine the same number of blobs in the slit. The

enthalpic interaction can be estimated. We assume that g

monomers in a blob are distributed homogenously in a

sphere of radius D; and only the monomers in the top and the

bottom crown of thickness a are in contact with the wall

(note this assumption does not lead to a homogenouse

density profile across the slit, see discussion in the later

section). The crown volume is approximately given by a2D

when a ! D: Therefore, the number of monomers contact-

ing with the wall per blob is given by gða=DÞ2: One obtains

bDH ø
N

g

� �
g

a

D

� �2

1w ¼ Nða=DÞ21w ð2Þ

Therefore, one may expect the free energy per chain in the

Fig. 1. The plot of confinement free energy bDmconf vs. the confinement

strength 2Rg0=D for a single chain with chain length N ¼ 25; 50, 100, and

200 partitioning into a slit of width D ¼ 6 at different surface/wall

interaction energies 1w:

Fig. 2. The plot of confinement free energy bDmconf vs. confinement

strength 2Rg0=D of a single chain with N ¼ 25; 50, 100, and 200

partitioning into a slit of different width in the subcritical regime. The

filled symbols are data when 1w ¼ 0 and the open symbols are data when

1w ¼ 20:2:
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presence of the weak attractive interaction

bDmconf ¼ c1Nða=DÞ21w þ c2ð2Rg0=DÞ1=n ð3Þ

where c1 and c2 are two unknown coefficients.

The above scaling results can be checked when one

examines DDm that accounts for the enthalpic interaction

DDm ¼ Dmð1w – 0Þ2 Dmð1w ¼ 0Þ ¼ DH ð4Þ

Fig. 3 presents the plot of bDDm=1w vs. Nða=DÞ2 for data

with 1w ¼ 20:1: The scaling is observed reasonably except

some small deviations when D ¼ 19: The data in Fig. 3 is

approximately linear. The same scaling plot is observed for

1w up to the critical adsorption point. Note in Fig. 3, 1w was

fixed, but N and D were varied independently. Therefore,

the scaling dependence of K on N and D in the first term of

Eq. (3) is confirmed here, but not necessary the dependence

on 1w:

Cifra and Bleha [41] have also examined the variation of

K for self-avoiding walk chains on the lattice at different

surface interactions. They fitted their simulation data

numerically and obtained the following empirical functional

form

bDmconf ¼ pð2Rg0=DÞq;

p ¼ 2:04 þ 2:011w 2 22:0112
w; q ¼ 1:57 þ 2:171w

ð5Þ

Their equation can be expanded in the power of 1w,

bDmconf ¼ ð2:04Þ ð2Rg0=DÞ1:57 þ 6:43ð2Rg0=DÞ1:571w þ · · ·

The first term in the expansion is the change of bDmconf in

the non-adsorptive slit, that corresponds to our the second

term, the entropic term in Eq. (3) (the numerical factors

obtained are different in the two studies because they have

studied primarily weak confinement limit). The second term

gives the linear dependence on 1w; which corresponds to our

first term, the enthalpic term, in Eq. (3), however, the

scaling dependence on N and D in the prefactor of 1w is

totally different in the two equations. If their equation is

correct, then a plot of bDmconf against 2Rg0=D for a fixed 1w

in the subcritical regime should still form a master curve for

different N and D: We have clearly shown in Fig. 2 that does

not hold. Their equation is unlikely to be correct. These

authors obtained their equation for a set of simulation data

where N and D were not independently varied (N was hold

fixed while only D was varied).

According to our arguments that lead to Eq. (3),

bDDm=1w would be a measure of the number of the contacts

between the polymer beads and the surfaces of the slit and,

therefore, one may compare this value at different surface

interactions. Fig. 4 presents the overlap of data sets with

1w ¼ 20:1 and 20.2. The number of contacts of the

polymer with the surfaces at different surface interactions is

close to each other, although it is not exactly the same. The

number of contacts is slightly higher when 1w becomes

more attractive. This suggests the dependence of K on 1w;

expressed in Eq. (3) is good to a first degree of

approximation. However, there might be higher order

terms of 1w that should be included in Eq. (3).

The density profiles in the confined slit also support the

above scaling arguments. Our simulations are performed

with a single chain in a lattice of 250a £ 250a £ ðD þ 1Þa

and the density profile fðzÞ is the percent of occupied sites

in each layer. A normalization factor D=aN is needed,

fnðzÞ ¼ fðzÞðD=aNÞ; in order to compare the density

profiles for different N and D: If the chain is composed of

blobs of size of slit width D; then the normalized density

profiles, fnðzÞ; for different chain lengths in the same slit are

the same. Note when one assumes that monomers in a blob

are distributed homogeneously in a sphere of blob size, this

does not lead to a flat density profile across the slit. There

are more monomers from the center slice of the sphere than

from the edge, hence high density in the center layers.

Density profiles in different slit widths are also the same

Fig. 3. The plot of bDDm=1w vs. Nða=DÞ2 where DDm ¼ Dmconfð1w ¼

20:1Þ2 Dmconfð1w ¼ 0Þ: Data are for a single chain with different N

partitioning into different slit width D: The surface interactions 1w ¼ 20:1:

Fig. 4. The plot of bDDm=1w vs. Nða=DÞ2 in the subcritical regime with two

surface interactions, 1w ¼ 20:1 and 20.2. Each set of data contain results

obtained with different N and different D:
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when the z coordinate is normalized by slit width D: Fig. 5

confirms the scaling prediction where representative density

profiles for different chain lengths N and different slit widths

D are presented for 1w ¼ 0: The density profiles fit into a

universal curve. Such universal density profiles do not apply

if the size of the chains is smaller than the slit width. As a

result, we have identified three systems, N ¼ 25 and 50 in

D ¼ 19 and N ¼ 25 in D ¼ 14; that do not satisfy the

condition Rg0 , D: Gorbunov and Skvortsov have predicted

that the universal density profile for the ideal chain in

narrow slit is given by sin2ðzp=DÞ: Using our scaling

arguments, we could derive an expected density profile but

the form is very cumbersome. Instead, we fitted our

universal density profile for self-avoiding chains to

sinpðzp=D) with p ¼ 1:3–1:4: When 1w – 0 and in the

subcritical regime, a universal density profile is still

obtained for different N and D; but the profile is flattened.

The density near the wall is higher and the peak is lowered

when 1w – 0:

The density at the first layer near the surfaces

fðaÞ accounts for the number of surface contacts. Since

fnðzÞ ¼ sinpðzp=DÞ; we obtain fðaÞ , N=ða=DÞpþ1; whereas

the scaling arguments using the blob concepts give

fðaÞ , N=ða=DÞ2: The data in Figs. 3 with 1w ¼ 20:1

actually gives a better scaling plot using bDDm=1w vs.

Nða=DÞpþ1 with p ¼ 1:3: However, data set with 1w ¼ 20:2

give somewhat worse scaling plots using Nða=DÞpþ1:

Fig. 6 presents the comparison of the radius gyration

of the confined chains in the absence (open symbols)

and presence of (filled symbols) surface interactions

ðb1w ¼ 20:2Þ: The Y-axis is Rconf
gxy =R0

gxy (data points above

y ¼ 1) and Rconf
gz =R0

gz (data points below y ¼ 1) where Rgxy

and Rgz are the radius of gyration in the xy and z directions,

and superscript ‘conf’ and ‘0’ stand for confined chain and

unconfined chain, respectively. Data for different chain

length N and slit width D form master curves for the xy and z

components, respectively, when plotted in this way. Note

there are hardly any differences between the data set with

1w ¼ 0 and data set with 1w – 0; except some small

difference in the z-component. Weakly attractive surface

interaction does not perturb the conformation of the chain in

the slit significantly. This is true up to 1w ¼ 20:3: The

variation of the shape of the chain upon increase of the

confinement strength is well understood in non-adsorptive

slit [42]. The chain first re-orient itself so its long axis is

parallel to the walls and then at strong confinement

ðD=2Rg0 , 1Þ the chain is deformed. The data in Fig. 6 at

strong confinement conforms to the scaling predictions,

which is drawn by the solid lines. The z-component is

proportional to the slit width D; Rconf
gz =Rg0 , D=2Rg0; and the

xy-component is given by Rconf
gxy =Rg0 , ðD=2Rg0Þ

1=4:

Therefore, one can summarize that in the subcritical

regime, the conformation of the chain is largely controlled

by confinement. The weak interaction between the surfaces

of the pore with the chain does not significantly modify the

chain conformation, but lowers the free energy of the chain

through the surface contacts. In the case of a long chain in a

narrow slit, the chain can be viewed as connected sequences

of blobs of size D: The free energy of the chain inside the

blob is given approximately by Eq. (3), where the second

entropy term is greater than the first enthalpy interaction.

3.2. Adsorptive regime ðl1wl . l1cr
w lÞ

In the adsorptive regime, the free energy of a chain inside

the slit is lower than that of a chain outside of the slit

because of the attractive enthalpy interaction between the

chain and the slit surface. The partition coefficient K as a

Fig. 5. The plot of normalized density profiles fnðzÞ ¼ fðzÞNa=D vs. the

normalized coordinate z=D for a single chain of different lengths N in

different slit widths D when the surface/wall interaction 1w ¼ 0:

Fig. 6. The comparison of the radius of gyration of the confined chain,

Rconf
g =Rg0 when 1w ¼ 0 (the filled symbols) with that when 1w ¼ 20:2

(open symbols) in the subcritical regime. The filled symbols are data when

1w ¼ 0 and the open symbols are data when 11w ¼ 20:2: The Y-axis is

Rconf
gxy =R0

gxy and Rconf
gz =R0

gz where ‘0’ stands for the value of the unconfined

chain. The two solid lines are the fit to the scaling predictions Rconf
gxy =R0

gxy ,
ðD=2Rg0Þ

1=4; and Rconf
gz =R0

gz , D at strong confinement.
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result is greater than one. The confinement free energy

bDmconf may still be separated to two parts: the enthalpic

and the entropic parts. However, the enthalpic interaction

dominates the partitioning and is larger than the entropic

interaction in the adsorptive regime.

In the adsorptive regime, the trend of dependence of the

partition coefficient on the surface interactions is the same

as in the subcritical regime. The stronger the surface

interaction, the larger the partition coefficient. The depen-

dences of the partition coefficient on the chain length and

slit width are reversed from that in the subcritical regime.

The longer the chain, the more extensive contacts the chain

will make with the slit surfaces and, therefore, the larger the

partition coefficient. A narrower slit on the other hand would

also give rise to more contacts with the chain and lead to a

larger partition coefficient. These effects are seen in Fig. 7,

which presents the plot of bDmconf for a single chain as a

function of chain length confined in a slit of different width

at 1w ¼ 20:4: One can see that bDmconf is more negative

(larger partition coefficient) for longer chains and narrower

slits, a different trend from that in the subcritical regime.

These are all because the enthalpic term is dominating in the

adsorptive regime.

In the adsorptive regime, a chain can be adsorbed on

a single standing solid surface and form an adsorbed

layer. The mean-field theory [35] and the scaling theory

[27] predict that the thickness of the adsorbed layer

above a single standing surface is given by h ¼ aD23=2

where D ¼ l1 2 1=1cl: When the chain is in the slit with

adsorptive surfaces, one may have two different regimes

depending on the relative values of h and D : h . D and

h , D: When h , D; the chain in the slit will be

absorbed on either side of the surfaces of the slit. In this

case, one may expect that the free energy of the chain

inside the slit have little dependence on the slit width D:

When h . D; the adsorbed layer will be disturbed and

the thickness will be controlled by the slit width D: In

this case, one may attempt to assume that the blob size is

still D; then the number of monomers in contacting with

the wall is still given by Eq. (3). However, we find that

this is not true. The plot DDm=1w vs. Nða=DÞ2 for data

with different D does not yield a common curve (figure

not shown). The data for larger D shifted upward,

implying that the chain has more contacts with the

surface of the slit than predicted according to the scaling

Nða=DÞ2:

The density profiles in the slit reveal the difference

between the adsorptive regime and the subcritical regime. In

wide slit with strong adsorptive interaction where h , D;

we find that it is somewhat difficult to obtain the symmetric

density profiles. The chain may be adsorbed on either side,

which gives rise to an unsymmetric density profile. One has

to allow for long equilibration times between snapshots to

obtain a good density profile. The density profiles obtained,

however, are all same for different N in wide slits in contrast

to the chains in wide slit in non-adsorptive regime. Density

profiles in narrow slits for different N are also the same since

now the characteristic length scale is the slit width D and is

independent of the chain length. However, normalized

density profiles in different slit width are no longer the same,

as shown in Fig. 8 for a chain with N ¼ 200 in different slit

widths at 1w ¼ 20:4: One may identify that h . D for these

systems. The density in the middle of the slit is higher in the

narrow slit than in the wide slit. Clearly the blob picture

must be modified to account for the observation seen in the

adsorptive regime. The number of surface contact with the

wall cannot be the same as in the subcritical regime.

Instead, we find that it may scale with Nða=DÞ in the

adsorptive regime. Fig. 9 presents the plot of bDDm=1w vs.

Nða=D) when 1w ¼ 20:4: A good scaling fit is obtained at

1w ¼ 20:4: At 1w ¼ 20:5; the scaling plot holds for data in

D ¼ 6; 9, and 14, but not for data set with D ¼ 19: This

implies that when h . D; the free energy of a single chain in

Fig. 7. The plot of the confinement free energy bDmconf in the adsorptive

regime ð1w ¼ 20:4Þ as a function of chain length N in different slit widths

D:

Fig. 8. The normalized density profiles of a single chain of N ¼ 200 in

different slit widths D in the adsorptive regime at 1w ¼ 20:4:
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the adsorptive slit is given by

bDmconf ¼ c1Nða=DÞ1w þ c2ð2Rg0=DÞ1=n ð6Þ

This result, however, is not unfamiliar. The free energy of a

single chain adsorbed on a single standing solid surface

according to the mean-field theory is given by the above

equation except the slit width D is replaced by the thickness

of adsorbed layer [27]. The thickness of the adsorbed layer

on a single standing solid surface is adjustable which can be

obtained by minimizing the above expression. When the

chain is confined in a slit with adsorptive walls, the

thickness of the adsorbed layer is no longer adjustable if

h . D and the thickness of the adsorbed layer is given by D

instead. Then Eq. (6) holds. It is not surprising that our data

fit into Eq. (6). We have examined here 1w ¼ 20:4 and

20.5, which are slightly above the critical adsorption point.

When 1w is only slightly above the critical adsorption point,

the thickness of the adsorbed layer is about the size of the

chain, Rg0: Therefore, most of our data at 1w ¼ 20:4 would

fall in the regime that h . D: Data set in D ¼ 19 with 1w ¼

20:5 did not fit into Eq. (6) because in this case h , D:

Therefore, in the adsorptive regime and h . D; the free

energy of the chain inside the slit is given by Eq. (6).

Although expression like Eq. (6) is often given, it is not

apparent that Eq. (6) should hold for a chain in the

adsorptive slit. We also note that the scaling theory using

blob concepts do not readily lead to Eq. (6). Other correct

arguments are needed to account for the validness of Eq. (6).

One can now see that the enthalpic term of the

confinement free energy maybe written as Nða=DÞx1w with

x varies from 2.0 or larger in the subcritical regime to 1.0 in

the adsorptive regime. Note the entropic term in Eq. (3) or

Eq. (6) can be re-expressed as Nða=DÞ1=n; and the enthalpic

term and the entropic terms are of opposite sign. Therefore,

one may expect that the crossover from the subcritical

regime to the adsorptive regime at the critical adsorption

point occur when the exponent in the first term is exactly

1=n: This then would lead to a critical behavior that the

partition coefficient would be independent of N and D: This

is indeed confirmed in our simulation data. Data set at 1w ¼

20:276 can be best collapsed into a single master curve

when bDDm is plotted against Nða=DÞ1=n; not against

Nða=DÞ2:0 or Nða=DÞ1:0: However, the two terms given here

are only the dominant terms. There are other higher order

terms that may become important at the critical adsorption

point and lead to a weak dependence of K on N and D even

at the critical adsorption point as observed earlier [41].

Finally, we present the radius of gyration of the chain in

the adsorptive regime in different slit width in Fig. 10. The

solid symbols are data when 1w ¼ 0: The open symbols are

data for 1w ¼ 20:5 and different symbols are used for

different slit width. In wide slit, one observes the expansion

of the xy-component and the reduction of the z-component

compared to the same chain in non-adsorptive regime. In

narrow slits at strong confinement, the z-component is

slightly higher than in non-adsorptive regime. This is due to

the difference in the monomer distributions in the two

regimes. In the adsorptive regime, more monomers are

distributed on the two surfaces, whereas in the non-

adsorptive regime, more monomers are in the center of

slit. Therefore, the measured radius of gyration of the chain

in the z-component is slightly larger than that in the non-

adsorptive regime as a result of the difference in the

monomer distributions in the slit.

The variation of the radius of gyration in the xy and z

components as the slit width D decreases for a given chain

length is also different from that in the non-adsorptive

regime. In the non-adsorptive regime, the xy-component

will continually increase and the z-component will con-

tinually decrease as the slit width D decreases. In the

adsorptive regime, one can observe a reversed behavior at

Fig. 9. The plot of bDDm=1w vs. Nða=DÞ in the adsorptive regime when

1w ¼ 20:4; where DDm ¼ Dmconfð1w – 0Þ2 Dmconfð1w ¼ 0Þ:

Fig. 10. The comparison of the radius of gyration of the confined chain,

Rconf
g =Rg0 when 1w ¼ 0 (the filled symbols) with that when 1w ¼ 20:5

(open symbols) in the adsorptive regime. The Y-axis is Rconf
gxy =R0

gxy and

Rconf
gz =R0

gz where ‘0’ stands for the value of the unconfined chain. Data for

1w ¼ 20:5 in different slit widths D are shown in different symbols.
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strong adsorption. The xy-component can decrease and the

z-component can increase as the slit width D decreases.

When the slit is wide, the chain is adsorbed on either side of

the surface and the conformation of the chain is severely

deformed in order to have maximum surface contacts. When

the slit gets narrower, the chain can be adsorbed on both

sides of the slit surfaces. Therefore, the chain can achieve

maximum surface contacts yet adopt a less severely

deformed conformation. The chain is, therefore, less

flattened, giving rise to a decrease in the xy-component

and an increase in the z-component.

4. Conclusions

We have considered the partitioning of a single polymer

chain into a slit with attractive surface interaction in an

athermal solvent through Monte Carlo simulations. Two

regimes have been studied, the subcritical regime and the

adsorptive regime in narrow slits. The free energy of the

chain in the pore is separated to two terms, the enthalpic

term arising from the surface interaction and the entropic

term of confining the chain inside the slit. Since, we are

considering a long chain in narrow slit, the entropic

confinement term is replaced by the confinement free

energy of the same chain in the pore with no surface

interaction, Dmð1w ¼ 0Þ; which is given by ðRg0=DÞ1=n: The

enthalpic term is given by Nða=DÞx1w with x , 2:0 or larger

in the subcritical regime and ,1.0 in the adsorptive regime.

We gave a scaling argument based on blob concepts that

would lead to an exponent x ¼ 2:0 for a long chain in

narrow slit in the subcritical regime. The density profiles in

the subcritical regime also support such blob concepts. In

the adsorptive regime, however, we do not have a valid

argument that could support the observed exponent x , 1:0:

The density profiles obtained in the adsorbed regime were

non-universal unlike in the non-adsorptive slit. At the

critical adsorption point, x ¼ 1=n is observed, which could

then explain the critical behavior where K has little

dependence on N or D:

In this study, the scaling dependence of K on N and D are

confirmed in different regimes, but the scaling dependence

on 1w is not confirmed. We consider the scaling dependence

on 1w is of less importance because in real situations one

cannot vary 1w at will. One is likely working at a fixed 1w in

certain regime and would be interested in the scaling

dependence of K on N and D: Our data also include only the

dominant term of surface interactions. There may be higher

order terms of 1w that should be included in Eqs. (3) and (6).

Moreover, Eqs. (3) and (6) are only applicable for long

chains in narrow slit and h . D if in adsorptive regime.

Also the exponent in the enthalpic term Nða=DÞx1w should

be considered as a variable changing from their respective

values in different regime.
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